Хлорид алюминия в твердом виде практически не растворим в углеводородах и слабо катализирует реакцию. Однако по мере выделения НСl хлорид алюминия начинает превращаться в темное жидкое вещество, также не растворимое в избытке углеводорода (комплекс Густавсона), которое обладает высокой каталитической активностью, и реакция постепенно ускоряется. Его можно приготовить, пропуская НСl при нагревании через суспензию АlСl3 в ароматическом углеводороде. Комплекс представляет собой соединение АlСl3 и НСl с 1-6 молекулами ароматического углеводорода, одна из которых находится в особом структурном состоянии положительно заряженного иона (σ-комплекс), а остальные образуют сольватную оболочку
Во избежание медленного катализа твердым хлоридом алюминия этот активный каталитический комплекс целесообразно готовить предварительно и потом подавать на реакцию. Кроме НСl его образованию способствуют небольшие добавки воды или соответствующего хлорпроизводного, роль которых состоит в генерации НСl. Более приемлемо использовать НСl или RCl, так как вода дезактивирует часть катализатора, разлагая его. По этой же причине необходимо хорошо осушать реагенты и следить, чтобы в реакционную смесь не попадала вода, способная вызвать бурное разложение комплекса. Другими катализаторными ядами являются многие соединения серы и аммиак, в меньшей степени – диены и ацетилен.
Способы получения изопропилбензола
Известны три основных способа получения изопропилбензола, имеющие промышленное значение: алкилирование бензола пропиленом в присутствия безводного хлористого алюминия (алкилирование по Фриделю – Крафтсу), алкилирование бензола пропиленом в паровой фазе с применением фосфорнокислого катализатора, алкилирование бензола пропиленом на цеолитных катализаторах.
Алкилирование бензола пропиленом в присутствия безводного хлористого алюминия характеризуется одностадийностью и непрерывностью. Бензол и олефины являются дешевым и доступным сырьем. Технология обладает высокой эффективностью и при конверсии олефина до 99 % дифференциальная селективность по моноалкилбензолу достигает 91 %. Конверсия бензола за один проход – 30-40 %. Образующиеся в ходе процесса побочные продукты (диалкилбензолы) используются для получения целевого продукта за счет совмещения реакции алкилирования с реакцией переалкилирования. Для обеспечения полного использования бензола используется принцип рециркуляции. Характерной особенностью данной технологии является наличие нескольких рециркуляционных циклов, охватывающих реакторную и разделительные подсистемы. Технология обладает невысоким энергопотреблением за счет использования тепла реакции. Существенным недостатком технологии жидкофазного алкилирования на катализаторах на основе хлорида алюминия является большое потребление воды, которая идет для приготовления щелочных растворов и промывки в скрубберах и превращается в кислотные, щелочные или солевые стоки.
Алкилирование бензола пропиленом в паровой фазе с применением фосфорнокислого катализатора (фосфорнокислотный, катализаторы на основе оксидов и солей металлов, оксиды, модифицированные BP3, аморфные алюмосиликаты, цеолиты и катиониты) намного упрощает технологическую схему, позволяет автоматизировать процесс, исключает проблему коррозии аппаратуры, облегчает отделение продуктов реакции, не требующих дополнительной очистки, которая в гомогенном катализе приводит к образованию стойких эмульсий и больших объемов сточных вод. Катализаторы можно регенерировать и использовать многократно .
Алкилирование бензола пропиленом на цеолитных катализаторах производится при температуре 370-5000С и давлении 1,4-2,8 МПа. По этой технологии образующиеся в процессе полиалкилбензолы возвращаются в узел алкилирования. Конверсия этилена составляет 100 %, а выход этилбензола в расчете на этилен достигает 98 % .
Технология алкилирования бензола на цеолитном катализаторе имеет ряд преимуществ в сравнении с известной схемой с использованием AlCl3. Главное достоинство касается экологических аспектов. Отсутствие в схеме кислотного фактора резко снижает образование кислых сточных вод. Другие достоинства — это меньшие расход катализатора (на два порядка), металлоемкость, площадь установки, количество персонала.