Поскольку выборка отобрана случайно, то нельзя заключить, что коэффициент корреляции генеральной совокупности r также отличен от нуля. Возникает необходимость при данном уровне значимости α проверить нулевую гипотезу H0:rг=0 о равенстве нулю генерального коэффициента корреляции при конкурирующей гипотезе H1:rг≠0.
В качестве критерия проверки нулевой гипотезы применяют случайную величину
Tнабл=Rвn-21-R2 (8)
Величина T при справедливости нулевой гипотезы имеет распределение Стьюдента с k=n-2 степенями свободы. Поэтому вычисляется эмпирическое значение критерия и по таблице критических точек распределения Стьюдента по выбранному уровню значимости α и числу степеней свободы k=n-2 находят критическую точку:
tкрα,k (9)
Если Tнабл >Tкр, то нулевую гипотезу отвергают, и выборочный коэффициент корреляции значимо отличается от нуля, а X и Y коррелированы, т.е. связаны линейной зависимостью.
Если Tнабл <Tкр, то нет оснований отвергать нулевую гипотезу и говорят, что выборочный коэффициент корреляции незначим, а X и Y некоррелированные, т.е. не связаны линейной зависимостью.