В кооперативных играх с трансферабельной полезностью, то есть возможностью передачи средств от одного игрока к другому, невозможно применять понятие индивидуальных платежей. Вместо этого используют так называемую характеристическую функцию, определяющую выигрыш каждой коалиции игроков. При этом предполагается, что выигрыш пустой коалиции равен нулю.
Основания такого подхода можно найти ещё в книге фон Неймана и Моргенштерна. Изучая нормальную форму для коалиционных игр, они рассудили, что если в игре с двумя сторонами образуется коалиция C, то против неё выступает коалиция N C. Образуется как бы игра для двух игроков. Но так как вариантов возможных коалиций много (а именно 2N, где N — количество игроков), то выигрыш для C будет некоторой характеристической величиной, зависящей от состава коалиции. Формально игра в такой форме (также называемая TU-игрой[6]) представляется парой (N, v), где N — множество всех игроков, а v : 2N → R — это характеристическая функция.
Подобная форма представления может быть применена для всех игр, в том числе без трансферабельной полезности. В настоящее время существуют способы перевести любую игру из нормальной формы в характеристическую, но преобразование в обратную сторону возможно не во всех случаях.
Дифференциальные игры
- Лев Цветков
- Высшая математика
Диплом777
Email: info@diplom777.ru
Phone: +7 (800) 707-84-52
Url: https://diplom777.ru/
Никольская 10
Москва, RU 109012
Содержание
Лев Цветков
Я являюсь кандидатом математических наук. Окончил финансовый университет при Правительстве Российской Федерации, факультет прикладной математики и информационных технологий ФУ. По специальности работаю более 25 лет, за это время написал 6 диссертаций, 20 научных статей и 6 монографий. Кроме преподавания работаю репетитором, а по выходным подрабатываю в компании «Диплом777». С сайтом сотрудничаю с 2012 года.