Приём заказов:
Круглосуточно
Москва
ул. Никольская, д. 10.
Ежедневно 8:00–20:00
Звонок бесплатный

Численные методы

Диплом777
Email: info@diplom777.ru
Phone: +7 (800) 707-84-52
Url:
Логотип сайта компании Диплом777
Никольская 10
Москва, RU 109012
Содержание

Для решения поставленной задачи подынтегральную функцию f(x) необходимо заменить приближенной функцией, которая может быть проинтегрирована в аналитическим виде. В качестве такой функции обычно используют полином Р(х) с узлами интерполяции в точках х0, х1, х2, …,хn. В этих точках значения функции и интерполяционного полинома полностью совпадают f(xi) = Р(xi).
Для получения простых формул интегрирования используют полиномы нулевой, первой и второй степени и соответственно получают формулы численного интегрирования: прямоугольников, трапеций и Симпсона.
Очевидно, что замена функции f(x) интерполирующим полиномом приводит к образованию погрешности вычисления значения интеграла

где I1 – точное значение интеграла, I – значение интеграла, вычисленного численным методом, а – погрешность метода.
Отметим, что увеличение числа подынтервалов n (или уменьшение длины шага интегрирования h) ведет к уменьшению погрешности.

1.3.1. Методы левых, правых и средних прямоугольников

Заменим подынтегральную функцию f(x) в пределах элементарного отрезка [xi;xi+1] интерполяционным многочленом нулевой степени (рис.1.3.2), то есть постоянной величиной, равной либо f(xi), либо f(xi+1).

Picture of Лев Цветков
Лев Цветков
Я являюсь кандидатом математических наук. Окончил финансовый университет при Правительстве Российской Федерации, факультет прикладной математики и информационных технологий ФУ. По специальности работаю более 25 лет, за это время написал 6 диссертаций, 20 научных статей и 6 монографий. Кроме преподавания работаю репетитором, а по выходным подрабатываю в компании «Диплом777». С сайтом сотрудничаю с 2012 года.